
1

2

Memory

Disk

CPU
Machine Learning, Statistics

“Classical” Data Mining

2

§ Web	data	sets	can	be	very	large	
§ Tens	to	hundreds	of	terabytes

§ Cannot	mine	on	a	single	server	(why?)

§ Standard	architecture	emerging:
§ Cluster	of	commodity	Linux	nodes
§ Gigabit	ethernet	interconnect

§ How	to	organize	computations	on	this	architecture?
§ Mask	issues	such	as	hardware	failure

3

4

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

3

5

§ First	order	problem:	if	nodes	can	fail,	how	can	we	store	data	persistently?	

§ Answer:	Distributed	File	System
§ Provides	global	file	namespace
§ Google	GFS;	Hadoop	HDFS;	Kosmix	KFS

§ Typical	usage	pattern
§ Huge	files	(100s	of	GB	to	TB)
§ Data	is	rarely	updated	in	place
§ Reads	and	appends	are	common

6

Distributed	File	System

4

§ GFS is a scalable, distributed file system

§ Developed to meet the rapidly growing data processing needs of
Google

§ Design is driven by key observations of Google's technological
environment:
§ Files are huge by traditional standards
§ Appending new data is common than overwriting existing one
§ Component failures are norm rather than exception

7

§ The system must be able to detect and recover from component
failures routinely

§ Multi-GB sized files are common. Small files need not be optimized

§ Many large, sequential writes that append data

§ Synchronization between hundreds of reads and writes should be
possible

§ Faster processing of data in bulk is more important than faster
individual read/write operations

8

5

9

§ A GFS cluster consists of single master and multiple
chunkservers

§ Each of these is a Linux machine running user level
server process

§ Files are divided into fixed-size chunks (16-64MB,
replicated 2x or 3x) each having a 64 bit handle

§ Chunkservers store chunks on local disks as Linux files

10

§ The master maintains all the file system metadata which
includes namespace, access control information, file-to-chunk
mapping

§ Controls system-wide activities such as garbage collection of
chunks

§ Communicates with each chunkserver to give instructions and
collect its state

6

§ GFS client code is linked into each application

§ Clients communicate with master for metadata operations

§ Clients interact with chunkservers for data-bearing
operations

§ Client code implements the file system APIs

§ Clients do not cache data, but they cache metadata
11

12

Distributed	File	System

7

§ All metadata is stored in master’s memory

§ Three types of metadata:
§ File and chunk namespaces
§ Mapping from files to chunks
§ Location of each chunk’s replica

§ Master does not store chunk information persistently

§ Collects information from chunkservers at start up

§ Periodic scanning
§ Implement chunk garbage collection
§ Chunk migration for load and disk space balancing

13

§ Client translates file name and bytes offset into a chunk index
within a file

§ Sends a request to master with file name and index

§ Master replies with chunk handle and location of replicas

§ Client sends request to the nearest replica (chunkserver)

§ Chunkserver replies with the requested data

14

8

1. Client asks master which chunkserver
holds lease for the chunk

2. Master replies with identity of primary
and locations of secondary replicas

3. Client pushes data to all replicas which
is stored in an LRU buffer cache by
replicas

4. Client sends a write request to primary.
replica to apply mutation to local state

5. Primary forwards the write request to
all replicas

6. Secondaries reply to primary indicating
operation completion

7. Primary replies to the client with either
success message or with any errors
encountered during this operation 15

§ After a file is deleted, GFS does not immediately reclaim the
available physical storage.
§ All the references to chunks are in the file-to-chunk mappings, which is

maintained by the master

§ The other replica not known to the master is “garbage”

§ Garbage collection is done when master is relatively free in a
background activity

§ Provides a safety net against accidental and irreversible deletion

16

9

§ One major challenge is to deal with component failures

§ Strategies adopted for high availability:
§ Fast Recovery: both master and chunkservers are designed to restore

their state and start in seconds
§ Chunk Replication: each chunk is replicated on multiple racks
§ Master replication: The master state is replicated for reliability. Its

operation log and checkpoints are replicated

§ Each chunkserver uses checksums to detect corruption of stored
data

17

§ A chunk is broken up into 64 KB blocks and each such block has a
32 bit checksum.
§ Checksums are kept in memory, stored persistently with logging

§ GFS servers generate diagnostic logs that record
§ Significant events like chunk servers going up and down
§ RPC requests and replies

18

10

19

20

11

§ GFS is a system for handling huge data-processing workloads
using commodity hardware
§ Delivers high aggregate throughput to many concurrent readers and

writers
§ File system control is kept separate, which passes through master
§ Data transfer directly passes between chunk servers and client

21

22

12

§ Parallelism
§ Data parallelism
§ Task parallelism

§ MapReduce programming model

§ Implementation Issues

23

§ At the micro level, independent algebraic operations can commute
– be processed in any order.

§ If commutative operations are applied to different memory
addresses, then they can also occur at the same time

§ Compilers, CPUs often do so automatically

x := (a * b) + (y * z);

computation	A computation	B

24

13

§ Commutativity can apply to larger operations. If foo() and bar() do
not manipulate the same memory, then there is no reason why these
cannot occur at the same time

x := foo(a) + bar(b)

computation	A computation	B

25

§ Arrows indicate dependent operations

§ write x operation waits for predecessors to complete

§ If foo and bar do not access the same memory, there is
not a dependency between them

§ These operations can occur in parallel in different
threads

foo(a) bar(b)

write	x

x := foo(a) + bar(b)

26

14

§ Creating dependency graphs requires sometimes-difficult
reasoning about isolated processes

§ I/O and other shared resources besides memory introduce
dependencies

§ More threads => more communication; this adds overhead and
complexity

27

§ Dividing work into larger “tasks” identifies logical units for
parallelization as threads

synchronization	
points

Task	A Task	B

unexploited	
parallelism

28

15

§ Intelligent task design eliminates as many synchronization points
as possible, but some will be inevitable

§ Independent tasks can operate on different physical machines in
distributed fashion

§ Good task design requires identifying common data and
functionality to move as a unit

29

§ One object called the master
initially owns all data.

§ Creates several workers to
process individual elements

§ Waits for workers to report
results back

worker	threads

master

30

16

§ Producer threads create work items

§ Consumer threads process them

§ Can be daisy-chained

CP

P

P

C

C

31

§ We	have	a	large	file	of	words,	one	word	to	a	line

§ Count	the	number	of	times	each	distinct	word	appears	in	the	file

§ Sample	application:	analyze	web	server	logs	to	find	popular	URLs

32

MapReduce

17

§ Case	1:	Entire	file	fits	in	memory

§ Case	2:	File	too	large	for	mem,	but	all	<word,	count>	pairs	fit	in	mem

§ Case	3:	File	on	disk,	too	many	distinct	words	to	fit	in	memory

33

MapReduce

§ To	make	it	slightly	harder,	suppose	we	have	a	large	corpus	of	documents

§ Count	the	number	of	times	each	distinct	word	occurs	in	the	corpus

§ The	above	captures	the	essence	of	MapReduce
§ Great	thing	is	that	it	is	naturally	parallelizable

34

MapReduce

18

§ Want to process lots of data (> 1 TB)

§ Want to parallelize across hundreds/thousands of CPUs

§ Want to make this easy

35

§ Automatic parallelization & distribution

§ Fault-tolerant

§ Provides status and monitoring tools

§ Clean abstraction for programmers

36

19

37

vk

k v

k v

map
vk

vk

…

k v
map

Input
key-value pairs

Intermediate
key-value pairs

…

k v

MapReduce

38

k v

…

k v

k v

k v

Intermediate
key-value pairs

group

reduce

reduce
k v

k v

k v

…

k v

…

k v

k v v

v v

Key-value groups
Output
key-value pairs

MapReduce

20

§ Input:	a	set	of	key/value	pairs

§ User	supplies	two	functions:
§ map(k,v)	à list(k1,v1)
§ reduce(k1,	list(v1))	à v2

§ (k1,v1)	is	an	intermediate	key/value	pair

§ Output	is	the	set	of	(k1,v2)	pairs

39

MapReduce

40

map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

21

41

User
Program

Worker

Worker

Master

Worker

Worker

Worker

fork fork fork

assign
map

assign
reduce

read
local
write

remote
read,
sort

Output
File 0

Output
File 1

write

Split 0
Split 1
Split 2

Input Data

MapReduce

§ map() functions run in parallel, creating different intermediate
values from different input data sets

§ reduce() functions also run in parallel, each working on a different
output key

§ All values are processed independently

§ Bottleneck: reduce phase can’t start until map phase is completely
finished.

42

22

§ Input,	final	output	are	stored	on	a	distributed	file	system
§ Scheduler	tries	to	schedule	map	tasks	“close” to	physical	storage	location	of	
input	data

§ Intermediate	results	are	stored	on	local	FS	of	map	and	reduce	workers

§ Output	is	often	input	to	another	MapReduce	task

43

MapReduce

§ Distributed Grep:
§ Map() emits a line if it matches a supplied pattern
§ Reduce() is an identity function that just copies the supplied

intermediate data to output.

§ Count of URL Access Frequency
§ Map() processes logs of web page requests and outputs (URL,1)
§ Reduce() adds together all values for the same URL and emits (URL, total

count)

44

23

§ Distributed sort

§ Web link-graph reversal

§ Term-vector per host

§ Web access log stats

§ Inverted index construction

§ Document clustering

§ Machine learning

§ Statistical machine translation

§ …

Implementation

45

§ Master	data	structures
§ Task	status:	(idle,	in-progress,	completed)
§ Idle	tasks	get	scheduled	as	workers	become	available
§ When	a	map	task	completes,	it	sends	the	master	the	location	and	sizes	of	its	R	
intermediate	files,	one	for	each	reducer

§ Master	pushes	this	info	to	reducers

§ Master	pings	workers	periodically	to	detect	failures
§ Re-executes completed & in-progress map() tasks
§ Re-executes in-progress reduce() tasks

46

MapReduce

24

§ Map	worker	failure
§ Map	tasks	completed	or	in-progress	at	worker	are	reset	to	idle
§ Reduce	workers	are	notified	when	task	is	rescheduled	on	another	worker

§ Reduce	worker	failure
§ Only	in-progress	tasks	are	reset	to	idle

§ Master	failure
§ MapReduce	task	is	aborted	and	client	is	notified

47

MapReduce

§ M	map	tasks,	R	reduce	tasks

§ Rule	of	thumb:
§ Make	M	and	R	much	larger	than	the	number	of	nodes	in	cluster
§ One	DFS	chunk	per	map	is	common
§ Improves	dynamic	load	balancing	and	speeds	recovery	from	worker	failure

§ Usually	R	is	smaller	than	M,	because	output	is	spread	across	R	files

48

MapReduce

25

§ Often	a	map	task	will	produce	many	pairs	of	the	form	(k,v1),	(k,v2),	… for	
the	same	key	k
§ E.g.,	popular	words	in	Word	Count

§ Can	save	network	time	by	pre-aggregating	at	mapper
§ combine(k1,	list(v1))	à v2
§ Usually	same	as	reduce	function

§ Works	only	if	reduce	function	is	commutative	and	associative

49

MapReduce

§ Inputs	to	map	tasks	are	created	by	contiguous	splits	of	input	file

§ For	reduce,	we	need	to	ensure	that	records	with	the	same	intermediate	key	
end	up	at	the	same	worker

§ System	uses	a	default	partition	function	e.g.,	hash(key)	mod	R

§ Sometimes	useful	to	override	
§ E.g.,	hash(hostname(URL))	mod	R	ensures	URLs	from	a	host	end	up	in	the	same	
output	file

50

MapReduce

26

§ Google
§ Not	available	outside	Google

§ Hadoop
§ An	open-source	implementation	in	Java
§ Uses	HDFS	for	stable	storage
§ Download:	http://hadoop.apache.org

§ Aster	Data
§ Cluster-optimized	SQL	Database	that	also	implements	MapReduce

51

§ Ability	to	rent	computing	by	the	hour
§ Additional	services	e.g.,	persistent	storage

§ Amazon’s	“Elastic	Compute	Cloud” (EC2)
§ Aster	Data	and	Hadoop	can	both	be	run	on	EC2

52

27

§ Jeffrey	Dean	and	Sanjay	Ghemawat,

MapReduce:	Simplified	Data	Processing			on	Large	Clusters
http://labs.google.com/papers/mapreduce.html

§ Sanjay	Ghemawat,	Howard	Gobioff,	and	Shun-Tak	Leung,	The	Google	
File	System

http://labs.google.com/papers/gfs.html

53

