GFS & MAPREDUCE

SINGLE-NODE ARCHITECTURE

CPU

Machine Learning, Statistics

Memory

“Classical” Data Mining
jisi

COMMODITY CLUSTERS

= Web data sets can be very large
= Tens to hundreds of terabytes

= Cannot mine on a single server (why?)

= Standard architecture emerging:
= Cluster of commodity Linux nodes

= Gigabit ethernet interconnect

= How to organize computations on this architecture?
= Mask issues such as hardware failure

CLUSTER ARCHITECTURE

2-10 Gbps backbone between racks

1 Gbps between
any pair of nodes
in a rack

Each rack contains 16-64 nodes

DISTRIBUTED FILE
SYSTEMS

STABLE STORAGE

= First order problem: if nodes can fail, how can we store data persistently?

= Answer: Distributed File System
= Provides global file namespace
= Google GFS; Hadoop HDFS; Kosmix KFS

= Typical usage pattern
= Huge files (100s of GB to TB)
= Data is rarely updated in place
= Reads and appends are common

()

INTRODUCTION TO GFS

= GFS is a scalable, distributed file system

* Developed to meet the rapidly growing data processing needs of
Google

» Design is driven by key observations of Google's technological
environment:
= Files are huge by traditional standards
= Appending new data is common than overwriting existing one
= Component failures are norm rather than exception

DESIGN OVERVIEW - ASSUMPTIONS

= The system must be able to detect and recover from component
failures routinely

= Multi-GB sized files are common. Small files need not be optimized
» Many large, sequential writes that append data

= Synchronization between hundreds of reads and writes should be
possible

= Faster processing of data in bulk is more important than faster
individual read/write operations

@

RRCHITECTURE

Application ;IS master)
PP "1 (file name, chunk index) | GF'S master o~ /too/bar
GFS client File namespace | chunk 2ef0
{chunk handle, h
chunk locations) Legend:
3 mmmp Data messages
Instructions to chunkserver - Control messages
Chunkserver state
(chunk handle, byte range) ! ver

: GI'S chunkserver ‘ ‘ GFS chunkserver ‘

chunk data N —] =
¢ | Linux file system ‘ ‘ Linux file system ‘

-y e e

= A GFS cluster consists of single master and multiple
chunkservers

= Each of these is a Linux machine running user level
server process

= Files are divided into fixed-size chunks (16-64MB,
replicated 2x or 3x) each having a 64 bit handle

= Chunkservers store chunks on local disks as Linux files

®

RRCHITECTURE — 6FS MASTER

Application (file name, chunk index) GFS master .~ /foo/bar

GFS client File namespace ‘,l" chunk 2ef0

(chunk handle,
chunk locations) /Q y
Legend:
& —

Data messages

Instructions to chunkserver - Control messages
(chunk handle, byte range) p Chunkserver state
= GFS chunkserver | I GFS chunkserver I
chunk data S I
Linux file system Linux file system
& Li’j — ij ij —

. The master maintains all the file system metadata which
includes namespace, access control information, file-to-chunk
mapping

. Controls system-wide activities such as garbage collection of
chunks

- Communicates with each chunkserver to give instructions and

collect its state

@

RRCHITECTURE — GFS CLIENT

Application (file name, chunk index) GFS master - /foo/bar
GFS client File 1 pace chunk 2ef0
(chunk handle, ;
chunk locations) /
Legend:
mmm) Data messages

Instructions to chunkserver - Control messages

Chunkserver state

:GFS chunkserver I |CFS chunkserver |
Linux file system I | Linux file system

Ble . el

(chunk handle, byte range)

chunk data

- GFS client code is linked into each application
- Clients communicate with master for metadata operations

. Clients interact with chunkservers for data-bearing
operations

- Client code implements the file system APIs
. Clients do not cache data, but they cache metadata

®

DISTRIBUTED FILE SYSTEM

Chunk server 1

Chunk server 2

Chunk server 3

Chunk server N

METADATA

= All metadata is stored in master’s memory

= Three types of metadata:
= File and chunk namespaces
= Mapping from files to chunks
= Location of each chunk’s replica

= Master does not store chunk information persistently
= Collects information from chunkservers at start up

» Periodic scanning
* Implement chunk garbage collection
= Chunk migration for load and disk space balancing

READ OPERATION

Application| o1 ome, chunk index) | GFS master .~ /foo/bar
GFS client | File namespace chunk 2ef0
(chunk handle,
Chunk locations) Legend
mmmmd Data messages
} \Inslru("ll(ms to chunkserver ’ \ - Control messages
(chunk handle, byte range) Chunkserver state
m— { GFS chunkserver | [GFS chunkserver |
e 25 chunkserver || ©F5 chunkserver | .
chunk data Linux file system Linux file system
1 file sy 1 il

ol — l=le —

= Client translates file name and bytes offset into a chunk index
within a file

= Sends a request to master with file name and index
= Master replies with chunk handle and location of replicas
= Client sends request to the nearest replica (chunkserver)

» Chunkserver replies with the requested data

@®

CONTROL FLOW OF A WRITE OPERATION

1. Client asks master which chunkserver
holds lease for the chunk - e [T

2. Master replies with identity of primary
and locations of secondary replicas

Secondary

Repica A j

Primary
Replica

4. Client sends a write request to primary l Legend:
replica to apply mutation to local state

3. Client pushes data to all replicas which
is stored in an LRU buffer cache by
replicas

— Cont

- D

Secondary

5. Primary forwards the write request to BephiaB [+—
all replicas

6. Secondaries reply to primary indicating
operation completion

7. Primary replies to the client with either
success message or with any errors
encountered during this operation Q

GARBAGE COLLECTION

= After a file is deleted, GFS does not immediately reclaim the
available physical storage.

= All the references to chunks are in the file-to-chunk mappings, which is
maintained by the master

= The other replica not known to the master is “garbage”

= Garbage collection is done when master is relatively free in a
background activity

» Provides a safety net against accidental and irreversible deletion

®

FAULT TOLERANCE AND DIAGNOSIS

* One major challenge is to deal with component failures

= Strategies adopted for high availability:

= Fast Recovery: both master and chunkservers are designed to restore
their state and start in seconds

= Chunk Replication: each chunk is replicated on multiple racks

= Master replication: The master state is replicated for reliability. Its
operation log and checkpoints are replicated

= Each chunkserver uses checksums to detect corruption of stored
data

FAULT TOLERANCE AND DIAGNOSIS

= A chunk is broken up into 64 KB blocks and each such block has a
32 bit checksum.

= Checksums are kept in memory, stored persistently with logging

= GFS servers generate diagnostic logs that record
= Significant events like chunk servers going up and down
= RPC requests and replies

®

REAL WORLD CLUSTERS

Read rate (last minute)
Read rate (last hour)

3 MB/s
562 MB/s

380 MB/s
384 MB/s

Read rate (since restart) 589 MB/s | 49 MB/s
Write rate (last minute) 1 MB/s | 101 MB/s
Write rate (last hour) 2 MB/s | 117 MB/s
Write rate (since restart) 25 MB/s 13 MB/s

Master ops (last minute)
Master ops (last hour)
Master ops (since restart)

325 Ops/s
381 Ops/s
202 Ops/s

533 Ops/s
518 Ops/s
347 Ops/s

| Cluster | A |
Chunkservers 342 227
Available disk space 72 TB 180 TB
Used disk space 55 TB 155 TB
Number of Files 735k 737k
Number of Dead files 22k 232 k
Number of Chunks 992 k | 1550 k
Metadata at chunkservers 13 GB 21 GB
Metadata at master 48 MB 60 MB
@
REAL WORLD CLUSTERS——READ/WRITE RATES
| Cluster A | B

10

CONCLUSIONS

= GFS is a system for handling huge data-processing workloads
using commodity hardware

= Delivers high aggregate throughput to many concurrent readers and
writers

= File system control is kept separate, which passes through master
= Data transfer directly passes between chunk servers and client

MAPREDUCE

11

OUTLINE

= Parallelism
= Data parallelism
= Task parallelism

= MapReduce programming model

= Implementation Issues

DATR PARALLELISM

X = (a * b) + (y * z);

\

computation A computation B

= At the micro level, independent algebraic operations can commute
— be processed in any order.

= If commutative operations are applied to different memory
addresses, then they can also occur at the same time

= Compilers, CPUs often do so automatically

@®

12

HIGHER-LEVEL PARALLELISM

x := foo(a) + Dbar(b)

\

computation A computation B

* Commutativity can apply to larger operations. If foo() and bar() do

not manipulate the same memory, then there is no reason why these

cannot occur at the same time

PARALLELISM: DEPENDENCY GRAPHS

x := foo(a) + Dbar(b)

foo(a) bar(b)

o~

write x

= Arrows indicate dependent operations

= write x operation waits for predecessors to complete

= If foo and bar do not access the same memory, there is
not a dependency between them

» These operations can occur in parallel in different
threads

()

13

DEPENDENCY GRAPHS: FULL
PARALLELISM?

= Creating dependency graphs requires sometimes-difficult

reasoning about isolated processes

= I/0 and other shared resources besides memory introduce

dependencies

= More threads => more communication; this adds overhead and

complexity

TASK-LEVEL PARALLELISM

= Dividing work into larger “tasks” identifies logical units for

parallelization as threads

Task A Task B

—_—

synchronization
points

i

unexploited
parallelism

@®

14

TASK-LEVEL PARALLELISM

= Intelligent task design eliminates as many synchronization points

as possible, but some will be inevitable

* Independent tasks can operate on different physical machines in

distributed fashion

= Good task design requires identifying common data and

functionality to move as a unit

MASTER/WORKERS

= One object called the master
initially owns all data.

= Creates several workers to
process individual elements

= Waits for workers to report
results back

worker threads

master

@

15

PRODUCER/CONSUMER FLOW

= Producer threads create work items
= Consumer threads process them

= Can be daisy-chained

Inu.

WARM UP: WORD COUNT

= We have a large file of words, one word to a line
= Count the number of times each distinct word appears in the file

= Sample application: analyze web server logs to find popular URLs

16

WORD COUNT (2)

= Case 1: Entire file fits in memory
= Case 2: File too large for mem, but all <word, count> pairs fit in mem

= Case 3: File on disk, too many distinct words to fit in memory

WORD COUNT (3)

= To make it slightly harder, suppose we have a large corpus of documents
= Count the number of times each distinct word occurs in the corpus

= The above captures the essence of MapReduce
= Great thing is that it is naturally parallelizable

()

17

MAPREDUCE MOTIVATION

= Want to process lots of data (> 1 TB)
= Want to parallelize across hundreds/thousands of CPUs

= Want to make this easy

MAPREDUCE

= Automatic parallelization & distribution
= Fault-tolerant
» Provides status and monitoring tools

= Clean abstraction for programmers

@®

18

MAPREDUCE: THE MAP STEP

Input Intermediate
key-value pairs key-value pairs

MAPREDUCE: THE REDUCE STEP

. Output
Intermediate Key-value groups key-value pairs
key-value pairs

7 A7 mad

A e @
& .

o <N PO

©

MAPREDUCE

= Input: a set of key/value pairs

= User supplies two functions:
= map(k,v) =2 list(k1,v1)
= reduce(k1, list(vl)) = v2

= (k1,v1) is an intermediate key/value pair

= Qutput is the set of (k1,v2) pairs

EXAMPLE: WORD COUNTING IN A LARGE CORPUS

map (String input key, String input value):
// input key: document name
// input value: document contents
for each word w in input value:

EmitIntermediate(w, "1");

reduce (String output key, Iterator
intermediate values) :

// output key: a word

// output values: a list of counts

int result = 0;

for each v in intermediate values:
result += Parselnt (v);

Emit (AsString(result));

@

20

DISTRIBUTED EXECUTION

OVERVIEW -

fork .~ forki \ fork

assign ‘

.
/' map.-
’ i

.

\
., assign
“veduce
N

-
2
-

remote
read,

sort Q

Input D

PARALLELISM

= map() functions run in parallel, creating different intermediate
values from different input data sets

= reduce() functions also run in parallel, each working on a different
output key

= All values are processed independently

= Bottleneck: reduce phase can’t start until map phase is completely
finished.

21

DATA FLOW

= Input, final output are stored on a distributed file system

= Scheduler tries to schedule map tasks “close” to physical storage location of
input data

= Intermediate results are stored on local FS of map and reduce workers

= Qutput is often input to another MapReduce task

MORE EXAMPLES

= Distributed Grep:
= Map() emits a line if it matches a supplied pattern

= Reduce() is an identity function that just copies the supplied
intermediate data to output.

= Count of URL Access Frequency
= Map() processes logs of web page requests and outputs (URL,1)

= Reduce() adds together all values for the same URL and emits (URL, total
count)

@

22

OTHER EXAMPLES

* Distributed sort

= Web link-graph reversal

= Term-vector per host

= Web access log stats

= Inverted index construction
= Document clustering

= Machine learning

= Statistical machine translation

COORDINATION

= Master data structures
= Task status: (idle, in-progress, completed)
= |dle tasks get scheduled as workers become available

= When a map task completes, it sends the master the location and sizes of its R
intermediate files, one for each reducer

= Master pushes this info to reducers

= Master pings workers periodically to detect failures
= Re-executes completed & in-progress map() tasks
= Re-executes in-progress reduce() tasks

()

23

FAILURES

= Map worker failure

= Map tasks completed or in-progress at worker are reset to idle

= Reduce workers are notified when task is rescheduled on another worker
= Reduce worker failure

= Only in-progress tasks are reset to idle
= Master failure

= MapReduce task is aborted and client is notified

HOW MANY MAP AND REDUCE JOBS?

= M map tasks, R reduce tasks
= Rule of thumb:

= Make M and R much larger than the number of nodes in cluster
= One DFS chunk per map is common

= Improves dynamic load balancing and speeds recovery from worker failure

= Usually R is smaller than M, because output is spread across R files

()

24

COMBINERS

= Often a map task will produce many pairs of the form (k,v1), (k,v2), ... for

the same key k
= E.g., popular words in Word Count

= Can save network time by pre-aggregating at mapper
= combine(k1, list(vl)) = v2

= Usually same as reduce function

= Works only if reduce function is commutative and associative

PARTITION FUNCTION

= Inputs to map tasks are created by contiguous splits of input file

= For reduce, we need to ensure that records with the same intermediate key

end up at the same worker

= System uses a default partition function e.g., hash(key) mod R

= Sometimes useful to override

= E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same

output file

@

25

IMPLEMENTATIONS

= Google
= Not available outside Google
= Hadoop

= An open-source implementation in Java
= Uses HDFS for stable storage
= Download:

= Aster Data

= Cluster-optimized SQL Database that also implements MapReduce

CLOUD COMPUTING

= Ability to rent computing by the hour
= Additional services e.g., persistent storage

I\

= Amazon's “Elastic Compute Cloud” (EC2)
= Aster Data and Hadoop can both be run on EC2

()

26

FURTHER READING

= Jeffrey Dean and Sanjay Ghemawat,

MapReduce: Simplified Data Processing on Large Clusters

= Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The Google
File System

http://labs.google.com/papers/gfs.html

27

